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An efficient solution method is presented to solve the eigenvalue problem arising
in the dynamic analysis of non-classically damped structural systems with multiple
eigenvalues. The proposed method is obtained by applying the modified
Newton–Raphson technique and the orthonormal condition of the eigenvectors
to the linear eigenproblem through matrix augmentation of the quadratic
eigenvalue problem. In the iteration methods, such as the inverse iteration method
and the subspace iteration method, singularity may occur during the factorizing
process when the shift value is close to an eigenvalue of the system. However, even
though the shift value is an eigenvalue of the system, the proposed method
provides non-singularity, and that is analytically proved. Since the modified
Newton–Raphson technique is adapted to the proposed method, initial values are
needed. Because the Lanczos method effectively produces better initial values than
other methods, the results of the Lanczos method are taken as the initial values
of the proposed method. Two numerical examples are presented to demonstrate
the effectiveness of the proposed method and the results are compared with those
of the well-known subspace iteration method and the Lanczos method.
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1. INTRODUCTION

In the analysis of dynamic response of structural systems, the equation of motion
of a damped system can be expressed as

Mü(t)+Cu̇(t)+Ku(t)= f(t), (1)

where M, K and C are the n by n mass, stiffness and non-classical damping
matrices [1], respectively, and ü(t), u̇(t) and u(t) are the n by 1 acceleration, velocity
and displacement vectors, respectively. To find the free vibration solution of the
system, first solve equation (1) for the homogeneous solution, which is of the form

u(t)=f elt. (2)

Substituting equation (2) into equation (1) yields the quadratic eigenproblem such
as

l2Mf+ lCf+Kf=0, (3)
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in which l and f are the eigenvalue and the corresponding eigenvector of the
system. There are 2n eigenvalues for the system with n degrees of freedom and
these occur either in real pairs or in complex conjugate pairs, depending upon
whether they correspond to overdamped or underdamped modes.

The common practice is to reformulate the quadratic system of equation to a
linear one by doubling the order of the system such as

$−K
0

0
M%6 f

lf7= l $C
M

M
0 %6 f

lf7 , (4)

which may be rewritten as

Ac= lBc (5)

with

A=$−K
0

0
M% , B=$C

M
M
0 % and c=6 f

lf7 . (6)

Transformation methods such as QR [2], LZ [3] or Jacobi [4] determine all the
eigenvalues and the associated eigenvectors in an arbitrary sequence. This is not
very efficient in situations where only the lowest frequencies are of interest and
there is a large number of degrees of freedom. Also transformation methods by
their nature modify the initial matrices during the solution process and can not
take full advantage of the sparseness of these matrices. The perturbation method
[5–9] is used for the eigenvalue problem of lightly damped systems. Since weak
damping implies that the eigensolution of the damped system will differ only
slightly from that of the corresponding undamped system, it is to set the
eigensolution of the undamped system as the zero order approximation of that of
the damped system and let the higher order terms account for the slightly damped
effect.

The classical inverse iteration method [10–12] is commonly used to solve for only
a small number of desired modes. However, the method requires a great deal of
complex arithmetic operations for each eigenvalue sought. The subspace iteration
method [13, 14] is a more efficient alternative than the inverse iteration method.
It yields all modes requested simultaneously and does not have the drawback that
the higher modes are less accurate than the lower modes because it avoids the
round-off errors of the inverse iteration method due to the deflation process.
However, as in the inverse iteration method, a large number of complex arithmetic
manipulations are required in the iteration process for general structural systems.
Furthermore, when the shift value becomes close to an eigenvalue of the system,
singularity may be encountered during the triangularization process.

In recent years there has been considerable interest in the Lanczos algorithm
and its applications. The Lanczos algorithm for the computation of eigenvalues
and eigenvectors of a real symmetric matrix was presented in reference [15] and
improved in references [16–20]. The Lanczos algorithm to solve the eigenvalue
problem of a non-classically damped system is dealt with in references [21–26]. The
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two-sided Lanczos algorithm [21–24] requires the generation of two sets of
Lanczos vectors, left and right, and the symmetric Lanczos algorithm [25, 26] uses
a set of Lanczos vectors to reduce a large eigenvalue problem in a much smaller
one. Although only real arithmetic is solved during the Lanczos recursive process,
in contrast to the case of real symmetric eigenproblems, there will be a possibility
of serious breakdown and the accuracy of the solutions obtained is low [27].

Although the authors presented the solution method for an eigenvalue problem
with distinct eigenvalues [28], the method has the demerit that singularity will
occur if the eigenvalue desired is multiple. Therefore, in the present paper we
develop the method to solve an eigenproblem with guaranteed non-singularity for
a damped structural system with multiple eigenvalues as well as distinct ones.

In the second section, the basic concept of the proposed method, which applies
the modified Newton–Raphson technique to a linear eigenproblem, and the
analytical proof of its non-singularity are presented. In the third section, two
numerical examples are presented to identify the efficiency of the proposed method
and the results of the proposed method are compared with those of the well-known
subspace iteration method [14] and the Lanczos method [25].

2. METHOD OF ANALYSIS

2.1.  

In this paper, an eigenproblem is considered of which the eigenvalue li has
multiplicity m. For simplicity, assume that the first m eigenvalues are equal

l0 l1 = l2 = · · ·= lm . (7)

Then equation (5) can be presented in matrix form for the m multiple eigenvalues
as follows

AC=BCL, (8)

where L=diag (l1, . . . , lm )= lIm and C=[c1 · · · cm ] is an n by m matrix
satisfying the orthonormal condition with respect to matrix B suich as

CTBC= Im , (9)

where Im is a unitary matrix of order m.
The objective is to develop an efficient solution method with guaranteed

non-singularity for an eigenproblem described by equations (8) and (9).

2.2.  

Assume that initial approximate solutions of equation (8) L(0) and C(0) are
known. Denoting the approximate eigenvalues and the associated eigenvectors
after k iterations by L(k) and C(k), the residual matrix becomes as follows:

R(k) =AC(k) −BC(k)L(k) (10)

and

(C(k))TBC(k) = Im , (11)
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where the residual matrix R(k) = [r(k)
1 · · · r(k)

m ] denotes the error for each eigenpair,
and is not generally zero because of substitution of approximate values in
equation (8).

In order to get the solutions converged to the multiple eigenvalues and the
associated eigenvectors of the system, the residual vectors should be removed. For
the purpose of that, the Newton–Raphson technique is applied such as

R(k+1) =AC(k+1) −BC(k+1)L(k+1)

=0 (12)

and

(C(k+1))TBC(k+1) = Im , (13)

where

L(k+1) =L(k) +DL(k) and C(k+1) =C(k) +DC(k). (14, 15)

Substituting equations (14) and (15) into equations (12) and (13) and neglecting
the non-linear terms BD(k)CD(k) and (DC(k))TBDC(k) yield the linear simultaneous
equations for unknown incremental values DL(k) and DC(k) as follows:

ADC(k) −BDC(k)L(k) −BC(k)DL(k) =−R(k) (16)

and

(C(k))TBDC(k) = 0. (17)

Since the eigenvalue is multiple, the offdiagonal elements of L(k) are zero or very
small compared with its diagonal elements at the kth iteration step, and the
diagonal elements very close. Thus, the second term on the right side of equation
(16) may be approximated by l(k)

1 BDC(k), which yields

ADC(k) − l(k)
1 BDC(k) −BC(k)DL(k) =−R(k). (18)

The matrix form of equations (18) and (17) can be written such as

$(A− l(k)
1 B)

(−BC(k))T

−BC(k)

0 %$DC(k)

DL(k)%=−$R(k)

0 % . (19)

Because the new coefficient matrix should be reformed and refactorized in each
iteration step, the proposed method, despite its rapid convergence, is not efficient.

These blemishes may be overcome by applying the modified Newton–Raphson
technique to equation (19) such as

$(A− l(0)
1 B)

(−BC(k))T

−BC(k)

0 %$DC(k)

DL(k)%=−$R(k)

0 % . (20)

The symmetric coefficient matrix of equation (20) is of order (2n+m). While
singularity occurs in the factorization process of the iteration methods such as the
inverse iteration method [10–12] and the subspace iteration method [13, 14] when
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the shift is close to an eigenvalue of the system, non-singularity of the proposed
method is always guaranteed by means of including a side condition
(C(k))TBDC(k) = 0, as shown in equation (20). This is the main difference compared
with the iteration method with shift. The complete procedure of the proposed
method for calculating the eigenpairs is summarized in Table 1.

2.3. -    

In the iteration methods, such as the inverse and the subspace iteration methods,
the shifting algorithm is adopted to improve the convergence. However, singularity
may occur during the factorizing process when the shift value is close to an
eigenvalue of the system. One of the characteristics of the proposed method is that
its non-singularity is also guaranteed in this situation. If the proposed method is
non-singular when the shift values is an eigenvalue itself, the coefficient matrix
encountered in the iteration process must necessarily be non-singular. Therefore,
the non-singularity of the proposed method is proved by introducing the new
eigenproblem of the resulting matrix such as

Eui = giFui , i=1, . . . , 2n+m, (21)

where gi and ui are the ith eigenvalue and the associated eigenvector of the new
eigenproblem, respectively, and

E=$A− l1B
(−BC)T

−BC

0 % , F= &CM0 M
0
0

0
0
Im' (22, 23)

T 1

The algorithm of the proposed method

1. Calculate initial values L(0) =diag (l(0)
1 · · · l(0)

m ) and C=[c(0)
1 · · · c(0)

m ].

(a) For k=0

(b) Define $A− l(0)
1 B

−(BC(k))T
−BC(k)

0 % .

(c) Compute −$R(k)

0 %,

where R(k) = [r(k)
1 · · · r(k)

m ]
=AC(k) −BC(k)L(k) .

(d) Compute $(A− l(0)
1 B)

(−BC(k))T
−BC(k)

0 %$DC(k)

DL(k)%=−$R(k)

0 % for $DC(k)

DL(k)% .

(e) Compute L(k+1) =L(k) +DL(k) and C(k+1) =C(k) +DC(k).

(f) If the norm of the residual vector does not satisfy the predetermined error limit, then
go to (b) with k= k+1, otherwise stop.
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Figure 1. Plane frame structure with lumped dampers. Young’s modulus: 1000; mass density: 1·0;
cross-section inertia: 1·0; cross-section area: 1·0; damping coefficients: a=0·001, b=0·001;
concentrated damping: 0·3.

or collectively

EU=FUG, (24)

where G=diag (g1 · · · g2n+m ) and U=[u1 · · · u2n+m ].
The eigenpairs of equation (24) are as follows:

Eigenvalue gi :

8−1
1

(l1 − lk ) k=m+1, . . . , 2n

:ms
:ms
:(2n−m)s

. (25)

Eigenvector ui :

6cj

ej7 , 6 cj

−ej7 , 6ck

0 7 j=1, . . . , m
k=m+1, . . . , 2n,

(26)
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T 2

Eigenvalues of the plane frame structure with
multi-lumped dampers

Mode number Eigenvalues

1 −0·09590+ j 8·6679
2 −0·09590+ j 8·6679
3 −0·09590− j 8·6679
4 −0·09590− j 8·6679
5 −0·60556+ j 15·5371
6 −0·60556+ j 15·5371
7 −0·60556− j 15·5371
8 −0·60556− j 15·5371
9 −0·57725+ j 20·7299

10 −0·57725+ j 20·7299
11 −0·57725− j 20·7299
12 −0·57725− j 20·7299

where eT
j is a unit vector of order m such as

eT
j = �0 · · · 0 1 0 · · · 0�

� jth location (27)

Figure 2. Variation of the error norm of the plane frame structure by the proposed method. ×,
1st, 3rd eigenpairs; , 2nd, 4th eigenpairs; , 5th, 7th eigenpairs; , 6th, 8th eigenpairs; , 9th,
11th eigenpairs; +, 10th, 12th eigenpairs.



1.0E+0

1.0E–1

1.0E–2

1.0E–3

1.0E–4

1.0E–5

1.0E–6

1.0E–7

1.0E–8
500 5 10 15 20 25 30

Error limit

Iteration number

35 40 45

E
rr

o
r 

n
o

rm

. .   .214

Figure 3. Variation of the error norm of the plane frame structure by the subspace iteration
method. Key as for Figure 2.

Considering the determinant of equation (24),

det [E] det [U]=det [F] det [U] det [G]

or

det [E]=det [F] det [G]

= (−1)m det [F] t
2n

k=m+1

(l1 − lk )

$ 0 (28)

because of

det [F]= nCM0 M
0
0

0
0
Imn= bCM M

0 b
=(−1)n det [M] det [M]

$ 0 (29)

The determinant of E is not equal to zero because det [M]$ 0 by definition. The
non-singularity of the proposed method is proved analytically.



1.0E+0

1.0E–1

1.0E–2

1.0E–3

1.0E–4

1.0E–5

1.0E–6

1.0E–7

1.0E–8

1.0E–9

1.0E–10
10812 24 36 48 60

Error
limit

Number of generated Lanczos vectors

72 84 96

E
rr

o
r 

n
o

rm

-      215

Figure 4. Variation of the error norm of the plane frame structure by the Lanczos method. Key
as for Figure 2.

2.4.      

Initial values of the proposed method can be obtained as the intermediate results
of the iteration methods [11–14] or the results of the approximate methods [21–26].
In this paper, the starting values are taken as the results of the symmetric Lanczos
method [25] with selectively reorthogonalization process because the method does
not need complex arithmetic in the Lanczos recursive process, and because the
multiplicity of the desired eigenvalues can be checked by the results of the 4p
Lanczos vectors (p: the number of desired eigenvalues). In the Lanczos method,
the initial Lanczos vector is set equal to A−1�1 · · · 1�T and then is normalized with
respect to matrix B.

3. NUMERICAL EXAMPLES

In this section two test problems with multiple eigenvalues are used to assess
the performance of the proposed method for generalized eigenproblems. The CPU
time spent for the first 12 eigenvalues and the associated eigenvectors and the

T 3

CPU time spent for the first 12 eigenvalues of the plane
frame structure with multi-lumped dampers

Methods CPU time in seconds (ratio)

Proposed method 872·69 (1·00)
Subspace iteration method 3096·62 (3·55)
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T 4

CPU time for the Lanczos method versus the number of generated
Lanczos vectors of the plane frame structure

The number of generated
Lanczos vectors CPU time in seconds

24 116·20
36 185·54
48 260·37
60 332·90
72 408·63
84 492·83
96 664·27

variation of the error norm to each iteration step of the proposed method are
compared with those of the subspace iteration method [14]. The least subspace
dimension to effectively calculate the required eigenpairs is 2p(=24). Each method
is stopped when the error norms are reduced by a factor of 10−6, which yields a
stable eigensolution and sufficient accuracy in the calculated eigenvalues and
eigenvectors for practical analysis [30]. The error norm [30] is defined as

e(k)
i =

>r(k)
i >2

>Ac(k)
i >2

, (30)

where
R(k) = [r(k)

1 · · · r(k)
m ]

=AC(k) −BC(k)L(k). (31)

Figure 5. (a) Three-dimensional building structure. (b) Damping from two-layer foundation.
Young’s modulus (N/m2): 2·1 E+11; mass density (kg/m3): 7850; cross-section inertia (m4); 0·833
E-05; cross-section area (m2): 0·01; proportional damping coefficients: a=−0·1755, b=0·02005;
concentrated damping C (N/m/s): 12 000.
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T 5

Eigenvalues of the three-dimensional building
structure with concentrated dampers

Mode number Eigenvalues

1 −0·13811+ j 3·09308
2 −0·13811+ j 3·09308
3 −0·13811− j 3·09308
4 −0·13811− j 3·09308
5 −3·53017+ j 2·20867
6 −3·53017− j 2·20867
7 −0·24297+ j 4·16980
8 −0·24297− j 4·16980
9 −1·65509+ j 7·04244

10 −1·65509+ j 7·04244
11 −1·65509− j 7·04244
12 −1·65509− j 7·04244

All executions are done on the CONVEX C3420 with 100 MIPS and 200
MFLOPS.

3.1.      

The finite element model of a plane frame is used as the first example. The
dimensionless values of the geometric configuration and material properties are

Figure 6. Variation of the error norm of the three-dimensional building by the proposed method.
× , 1st, 3rd eigenpairs; , 2nd, 4th eigenpairs; , 5th, 6th eigenpairs; , 7th, 8th eigenpairs; ,
9th, 11th eigenpairs; + , 10th, 12th eigenpairs 2.
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Figure 7. Variation of the error norm of the three-dimensional building by the subspace iteration
method. Key as for Figure 6.

shown in Figure 1. The model is discretized in 200 beam elements resulting in the
system of dynamic equations with a total of 590 degrees of freedom. Thus, the
order of the associated eigenproblem is 1180. The consistent mass matrix is used

Figure 8. Variation of the error norm of the three-dimensional building by the Lanczos method.
Key as for Figure 6.
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T 6

CPU time spent for the first 12 eigenvalues of the three-
dimensional building structure with concentrated dampers

Methods CPU time in seconds (ratio)

Proposed method 7641·94 (1·00)
Subspace iteration method 8337·60 (1·09)

for M. Its damping matrix is derived from the proportional damping expression
given by C= aM+ bK and concentrated dampers.

The eigenvalues of the model are shown in Table 2. All the eigenvalues of the
model are multiple. The variations of the error norms to the iteration step are
shown in Figures 2–4. The error norms of the initial values obtained by using the
4p(=48) Lanczos vectors are about 0·7 to 10−7. Using the results of the Lanczos
method, the multiplicity of the desired eigenvalues can be checked. The number
of iterations for the proposed method applied to the initial values that do not
satisfy the error norm 10−6 is only one. The results in Figures 2 and 3 indicate that
the convergence of the proposed method is much better than that of the subspace
iteration method. The CPU time for the proposed method is compared with that
of the subspace iteration method in Table 3. If we let the solution time for the
proposed method be 1, it takes 3·55 times for the subspace iteration method. In
Table 4, the CPU time for the Lanczos method is summarized. Because the method
does not need complex operations, less solution time is required. However, the
results of the Lanczos method, as shown in Figure 4, are not improved in spite
of the increase of the number of Lanczos vectors.

3.2. -     

In this example a three-dimensional building structure with concentrated
dampers is presented. The geometric configuration and material properties are
shown in Figure 5. The model is divided into 436 beam elements and has 1128
degrees of freedom. The order of the associated eigenproblem is 2256. The

T 7

CPU time for the Lanczos method versus the number of generated
Lanczos vectors of three-dimensional building structure

The number of generated
Lanczos vectors CPU time in seconds

24 613·33
36 933·51
48 1246·60
60 1572·73
72 2000·39
84 2227·23
96 2582·77
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consistent mass matrix is used to define M. The damping matrix consists of
the Rayleigh damping and concentrated dampers.

The results of the proposed method are summarized in Table 5. The first and
second eigenvalues are coincident, and also the ninth and tenth eigenvalues and
their conjugate eigenvalues are coincident. The variations of the error norms to
the iteration step are shown in Figures 6–8. The first step of the proposed method
denotes the results of the Lanczos algorithm. The error norms of the initial values
obtained by using the 48 Lanczos vectors are about 10−4 to 10−7. The number of
iterations for the proposed method applied to the initial values that do not satisfy
the error norm 10−6 is one or two. The results in Figures 6–8 indicate that the
convergence of the proposed method is much better than that of the subspace
iteration method. The CPU time for the proposed method is compared with the
subspace iteration method in Table 6. If the solution time for the proposed method
is 1, it takes 1·09 times for the subspace iteration method. In Table 7, the CPU
time for the Lanczos method is summarized. Because the method does not need
complex operations, less solution time is required. However, the results of the
Lanczos method, as shown in Figure 8 are not improved in spite of the increase
of the number of Lanczos vectors.

4. CONCLUSIONS

An efficient method for solving damped structural dynamic eigenproblems with
multiple eigenvalues as well as distinct ones is presented. Characteristics of the
proposed method identified by the numerical results from test problems are
identified as follows: (1) Since the convergence rate of the proposed method is high,
the proposed method is very effective for solving damped dynamic systems with
a large number of degrees of freedom. (2) Non-singularity of the proposed method
is always guaranteed, which is proved analytically. (3) The algorithm of the
proposed method is simple.
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